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Abstract. A linear process driven by additive Gaussian white noise, which is randomly 
interrupted by an exponentially correlated two-state {0,1} Markovian stochastic process, 
is considered. A characteristic function of the process is obtained using an approach based 
on conditional functionals for Markov processes. A single-event time dependent prob- 
ability distribution is presented. Steady states are analysed in terms of stationary 
distributions and moments of the process. The deviation from Gaussianity (kurtosis) is 
investigated. 

1. Introduction 

In a narrow sense, a diffusion process is determined by a second-order partial 
differential equation of parabolic type. In a wide sense, any evolution iduenced by 
stochastic fluctuations, random perturbations or noises is named a diffusion process. 
A mathematical study of random evolution of the system begins with the modelling of 
stochastic perturbations. The simplest model is Gaussian white noise [l] with zero 
correlation time. It describes parabolic diffusion (because it is determined by differen- 
tial equations of parabolic type). Non-Gaussian white noises, in particular Poisson 
white noise [Z, 31 and correlated Gaussian noises [4,5] have been receiving consider- 
ations in the literature. Non-Gaussian correlated processes have been applied as well 
[6]. In particular, an exponentially correlated two-state Markov process describes the 
so-called hyperbolic diffusion [7] determined by a second-order partial differential 
equation of hyperbolic type. 

In this paper we shall consider processes driven by randomly interrupted Gaussian 
white noise [S, 91. The random interruption is realized by an exponentially correlated 
two-state Markov process which can take two possible values {O, 1). The value 0 
means that the white noise is switched off and the value 1 corresponds to switching on 
the white noise. This kind of process can be a caricature of random media [8] or it can 
represent a controlled noise generated in the laboratory by specific devices and 
introduced in the system of interest in order to investigate its influences and reaction 
of the system. 

In section 2 we present general considerations on a system with interrupted noise. 
An evolution equation of the integro-differential type for a one-dimensional prob- 
ability distribution function is presented in this section, too. In section 3 we consider a 
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particular case of the model, namely, a linear system with additive noise. This model 
is exactly soluble. To obtain a probability distribution of the process, a conditional 
functional of the two-state Markov process is introduced in section 4. This functional 
satisfies a set of two ordinary differential equations which are solved in section 4. In 
section 5, a time-evolution of the probability distribution is considered and some 
special cases (in dependence of values of the correlation time of the two-state Markov 
process) are presented. In section 6 we study stationary distributions. Section 7 is 
devoted to moments of the process of interest. 

2. General considerations 

In a previous paper [9], we considered processes driven by randomly interrupted 
Gaussian noises and described by a stochastic equation (in the Stratonovich sense [l]): 

% =f(xt) +g(xM) x E (nl, x2)  (2.1) 
for a given relevant variable xt. The functionsf(x) and g(x) are deterministic, y ( f )  is a 
stochastic process defined as [S, 91 

r(t) = (112) 11 + t(t)l?l(t) (2.2) 
where ~ ( t )  is Gaussian white noise [l] 

(?l(t)) = 0 (?lMs))=2DW-s) D>O (2.3) 

(&)) = 0 (2.4) 

pl(0)=Pr{E(O)= I}=+ p-l(0)=Pr{$(O)= -I}=+. (2.5) 

and t ( t )  ={-1,1} is dichotomic noise (a symmetric two-state Markov process) [lo] 

(E(t)E(sO) = exp(- 2 4  - s I). 
Transition probabilities +1+-1 and -l++l in small time dt equal vdt. Initial 
probabilities for E(t) are chosen as 

It is assumed that an initial value^^ of the process (2.1) is statistically independent 
of y(t). It is also assumed that ~ ( t )  and t(t) are statistically independent of each other. 
Hence 

(Y(t ) )  = 0 (y(t)y(s)) = D W - 4  (2.6) 
The non-Gaussian noise y(t) is independent of the system, its intensity is D and it has 
zero correlation time (white noise!). The higher-order correlation functions of y ( f )  can 
be obtained by making use of the Gaussian character of q(t) and properties of &) [2]. 

If the variable tis time then y(t) can be interpreted as a Langevin force switched on 
and off at random instants. If t is a spatial variable then y(t)  can model stochastic two- 
layer medium: one layer is a medium with a diffusion coefficient D1 = D [S, 111 and the 
other is a vacuum (surrounding characterized by a diffusion coefficient D2=O). It is 
the simplest model of randomly stratified media and can be starting point of 
generalizations for N layers with different diffusion coefficients Di (i= 1,2, . . . , N )  
for each layer [ll]. 

As possible applications of equations like (2.1) one can mention the problem of 
multiple scattering of particles through plates of matter separated by vacuum gaps [a]; 
transport phenomena in sponge-type structures with empty places (vacua) and matter 
randomly distributed in space; wave propagation in randomly stratified media [12], 
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and so on. Equation (2.1) is a particular case of two-state models in which transitions 
from one state (determinstic: i , = f ( x , ) )  to the other state (diffusional: 
i , = f ( x t )  +g(x,)q(t)) and vice versa occur at random time. Such models are mentioned 
by van Kampen [13]. Balakrishnan et a1 [I41 considered first-passage time problems 
for processes l i e  (2.1). Indeed, their equation (3.1) in [14] reduces to our equation 
(2: 1) when f+ (x) =f- (x) = f(x), g- (x) = 0 and g+ (x) = g(x) . 

In [9] it was shown that the time-evolution of a single-event probability distribu- 
tion P(x, t) of the process (2.1) satisfies the following integro-differential equation 

a a D a  a 
at ax 2 ax ax -P(x,t)=--f(x)P(x,t)+--g(x)-g(x)P(x, t) 

(2.7) 

where %(x, t ly ,~) ,  tas ,  is a transition probability distribution of a diffusion process 
determined by the infinitesimal generator &x): 

a D d  a 
B(x)=--f(x)+--g(x)-g(x). ax 2 ax ax 

Notice that the first two terms in the right-hand side of equation (2.7) represent the 
standard parabolic diffusion whereas the remainder describes effects connected with 
the correlation time -c,--1/2v of the process E(t). Indeed, if the correlation time rc 
tends to zero (v+ m) then the last term in the right-hand side of equation (2.7) tends 
to zero and (2.7) reduces to a Fokker-Planck equation. 

3. Linear processes with additive noise 

It is obvious that equation (2.7) cannot be solved for the general case. Therefore it is 
worth investigating simple cases for which P(x,  t) can exactly be calculated. The first 
case (pure diffusive), whenf(x) = O  and&) = 1, was studied by Laskin [SI. Here, we 
wish to consider a second fundamental model, a linear system with additive noise y(t): 

i ( t )  = - M(t)  + y(t) x E ( - - m ,  m )  a>O. (3.1) 
Linear equations like (3.1) can describe relaxation processes, the decay of unstable 
states, a postion of an overdamped particle in a harmonic potential (when inertial 
effects can be neglected), a particle's velocity in the absence of an external potential 
and so on. 

Our aim is to determine the probability distribution P(x,  t )  of the process (3.1) 
with the initial condition 

P ( X 7  0) = P ( X )  (3.2) 
where p(x) is given. We could start with equation (2.7). The transition probability 
%(x, f ly , s )  is known in this case because  then (2.8)) is a generator of the 
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Ornstein-Uhlenbeck process [l]. Unfortunately, even hi this simple case it is rather 
difficult to solve equation (2.7). Therefore we will calculate P(x, t )  in another way. 
Notice that 

(3.3) 

where p ( x ,  tlxo, 0) is an initial transition probability distribution of the process (3.1) 
which can be expressed as 

d o  C(o, t) (3.4) 

where C(w, t) is a characteristic function of the process (3.1) 

C(0, t )  =(e’4‘))5.n (3.5) 
with x(t) being a solution of (3.1) for a given realization of the process y(t). The 
superscripts E and rl indicate average over all realizations of the processes E(t) and 
~ ( t ) ,  respectively (for notational convenience we have dropped explicit dependence of 
C(w, t) on the initial value xo of x(t)). The procedure of averaging over all realizations 
of the Gaussian process ~ ( t )  is well known [l] and gives 

c(w, t)=exp 4a 

where 

To find c(o, 2) we will follow a procedure similar to that used in [15]. 

4. Conditional functional 

Consider the functional 5[EIQ, T ]  of the stochastic process E(t) defined as follows 

For fixed time t = T and for 

Q = &m2D e-”‘ (4.2) 

e(o, f) = 5[@2 = ) o z D  e-=‘, t] .  (4-3) 

one has [U] 

Let us introduce the conditional functional W(t, 6) defined by the relation [16] 
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where (A denotes a mean value over E of the quantity A under the condition B and 
b ={-1,l) (for notational convenience we drop the explicit functional dependence of 
W(t, b) upon the process t(t)). 

The functional IF[EIC2, TI can be obtained from (4.4) by averaging W(t, b) over all 
possible initial values of E(t), namely 

The initial probabilitiesp,(O) are given in (2.5) and therefore (4.5) takes the form 

E[tlC2, T]=f[W(T, +l)+W(T, -1)]. (4.6) 
It can be shown [16] that the conditional functional (4.4) obeys the following set of 
equations 

a 
- at W(t, b) = LW(t, b) - bC2 e2.?v(t, b) (4.7) 

where W(t, b) is a column vector built from W(t, 1) and W(t, -1). The operator L is a 
Kolmogorov backward operator for the process t(t) and has the form' [16] 

LA( -  v -v v). 

The initial conditions for equations (4.7) follow from (4.4) and read 

W(0,l) = 1 ~ W(0, -1) = 1. (4.9) 
Equations (4.7) form a system of two  linear non-autonomous ordinary differential 
equations. To solve them, let us define a new variable z as 

(4.10) z = z(t) = Q e"" 

and a new function V(z, b) via the relation 

W(t, b)=V(z(t), b). (4.11) 

Then the set (4.7) can be converted into equations 

(4.12a) 
a 

2nz- V(z, 1)= -vV(z, l)+vV(a, -1) -zV(z, 1) 
az 

az 
a 

k r - ~ ( z ,  -1)=vV(z, 1)-Yv(z, -~ )+zv(z ,  -1) (4.12b) 

with the initial conditions 

V(Q, 1) = 1 V(Q, -l)= 1. 

Defining the functions G(z) and F(r) as 

G(z) =. [V(Z, 1) - V(P, -1)] 

(4.13) 

(4.14~) 

'In the general case, Kohnogorov backward and forward operators are different. In the case considered 
here, they are equal because the transition probabilities per unit time le-1 and -1-1 are equal. 
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F(z) =f [V(z, 1) + V(z7 -01 (4.146) 
and using (4.12) yield 

;?aF'(?)= -C(S) 

2arG'(z) = -2wG(z) - tF(z) 
F ( 8 )  = 1 

azF'(r) + oF'(r) - (z/4a)F(z) = 0 (4.16) 

F ( 8 )  = 1 F'(8)  = 0. (4.17) 

(4.15) 
G(8) = 0 

(the prime denotes'a derivative with respect to z) from which we get the equation 

with the conditions 

The solution of equation (4.16) is known [17] and reads 

where 

(4.18) 

(4.19) 

The functions Ip(z) and K,(z) are modified Bessel functions. Constants A,  and Az can 
be obtained from the conditions (4.17) 

(4.20) 

One can take an arbitrary set of linearly independent solutions of the modified Bessel 
differential equation but (4.18) is useful for analysis of the long-time limit and 
stationary probabilities. 

5. Time-dependent distribution 

From equations (3.7), (4.3), (4.6), (4.11) and (4.14b) we obtain the relation 

for 
e(@, t)=F(z)  (5.1) 

z=z(t)=Qew 8 = $w2D e-Z". ( 5 4  
Next, from (3.4), (3.6), (5.1), (5.2) and (4.18) we obtain the initial transition 
probability distributionp(x, t ly.  0) of the process (3.1) in the following form 

p ( x , t ~ y , O ) = ~ ~ ~ ~ d w e - ' " e ' " ' - "  WO, t) (5.3) 

where 

N(w, t )  = amz  e-('+")' exp[-aw2(1 - e-%' )I 
x [K-p+l(aw2 e-")I-,(aw') + ~-p+l(awz e-h*)K-p(awz)] (5.4) 

a= D14a. (5.5) 

and 
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Figure 1. Some selected examples of the spectral density S,(w) of the process 5(t) for 
various values of the correlation time zm of E(& For zE= m , it is a Dirac &function 
represented by a vertical line. For rc,=O, S,(o) =O.  

As p(x )  in (3.3) one can choose an arbitrary initial distribution for x(t) .  If we assume 
the deterministic initial state, p(x )  = S ( x - x , ) ,  then P(x ,  t) equals in fact p(x,  tlxo, 0). 
Random initial states lead to no new essential properties of P(x,  t) .  In particular, a 
stationary distribution does not depend on the initial state. Therefore here we 
consider a case of the deterministic initial condition. Our model contains three 
parameters: 

D ;  the intensity of the noise ~ ( t ) ,  
z,= 112v; the correlation time of E(t), 
z,= l l a ;  the deterministic relaxation time of x( t ) .  

The crucial role plays the relation between rc and z,. 

5.1. The case of infinite rc 
Physically, this case corresponds to situations for which r,>z,. If z, is infinite then the 
process E(t) is~strongly correlated 

(E(t)E(4) = 1 (5.6) 
for any t and s. 

The spectral density SE(@) of the process E(t) defined as 

has for this case the form (figure 1) 

(5.7) 
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The infmite zc corresponds to .U = 4 in (4.19) and then the integrand in (5.3) can be 
expressed by elementary functions [17]. The integral in (5.3) can be calculated with 
the result 

p(x ,  tlxo,O)=#(x-xoe-a) 

1 a 11” [ a(x-x0e-“)* +’[ 2 2.nD(l-e-”) exp -2D(l-e-”) ‘ (5.9) 

This equation has an evident interpretation. If zc tends to infinity then the transition 
probabilities 1-t -1 and -1+1 of the process E(t) tend to zero. With probability f 
noise y ( t )  in (3.1) is switched off and then x(t) is a deterministic process. It 
corresponds to the Dirac delta distribution in (5.9). With probability f the noise is 
switched on and then x(t) is a Gaussian process. It corresponds to the second term in 
the right-hand side of equation (5.9). 

5.2. The case O<zc<- 

Physically, this case should be associated with situations when z. is of order z,. Now, 
<(t) is exponentially correlated (2.4) and the spectral density has the Lorentzian form 
(figure 1) 

(5.10) 

In a general case, the integral in (5.3) is not calculable. Here, we present an example 
when zc=(1/4)zd or v=2a 1181: 

p(x ,  O)=fe-ad(x-xoe-”’) 

~x -xo .-”I]. I”’ a a - - D [ x - xo e-“ I erfc [ [2D(l-e-U) (5.11) 

The time-evolution of (5.11) is visualized in figure 2. 

5.3. The case zc=O 

Physically, this case corresponds to situations when 2;*zd. For this case, E(t) is 
uncorrelated 

(“)) = 0 fort#s (5.12) 

(but (E’(t)) = 1 for any time t )  and its spectral density is zero (figure 1) 

S&) = 0 (5.13) 

The process x(r) reduces to an Ornstein-Uhlenbeck process [l] with 



Linear systems with interrupted noise 4851 

Let us notice that although Gaussian functions in (5.14) and (5.9) are different, 
fluctuations determined by them have the same strength. 

6. ~ Stationary distribution 

The stationary distribution P(x) can be found by calculating the limit t--t m in (5.3). 
To obtain P(x) ,  let us express modified Bessel functions in (5.4) as [17] 

where ,F,(B, y, 2 )  is a Kummer (confluent hypergeometric) function and U(B, y ,  z) is 
a Trimmi function [17]. 

From (6.1) it follows that 

lim t-m i-s+l(amz e-”) = 0 (6.2) 

and 

FigureZ. Graph showing a pan of the distribution p(x,r /x , ,O) (3.8) for D/n=10, 
re= (1/4)rd and .q= -10. For a better visualization, the Dirac &pan of&, flx0, 0) is not 
presented. 
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Figure 3. Plots of the stationary probability distribution P(x) versus x for (a) r, = m , 
(b) rC=rd=l/u, (c) 7*=(1/2)r6, (d) 7<=(1/4)z*, (e) rc=(l/8)rd, (0 r.=O (Gaussian) and 
D/a=l .  Thecurves: (8) D / a = l ,  (h) D/a=lOandforz,=fl/Z)r,. 

where r(z) stands for an Euler gamma function. 

probability distribution in the form 
Taking into account (6.1)-(6.3) in (5.3) and (5.4) allows to present the stationary 

The expression (6.4) represents in general three classes of distributions: 

(i) singular distributions; 
(ii) functions which diverge to infinity when the argument tends to zero; 

(iii) functions which are finite at zero. 

6.1. The case of infinite zc 

The case of a singular distribution is realized when the correlation time zc of the 
process t(t) is infinite. Then the parameter p = and from (6.4) we get (figure 3) 

If follows also from equation (5.9) in the limit t+ - . 
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6.2. The case of finite z, 
For rc< m (p<$ the integration in (6.4) can be carried out [19]. As a result we obtain 

where W,,(z)  stands for a Whittaker function [17]. 

6.2.1. zds2r,< m . In this case, P(x) diverges to infinity when x tends to zero: e.g. if 
zc= z, then P(x) can be expressed by elementary functions (figure 3) 

For x+O it diverges as l ~ l - ~ ” .  
If zc= (1/2)rd then (figure 3) 

It has the logarithmic divergence [17], Ko(x)=-y- ln(x/2)  for O<x*l. 

6.2.2. 0 < 2 ~ ~ < z ~ .  In this case, P(x) has no singularities at x=O:  e.g., if zc=(1/4)zd 
then (figure 3 )  

For z,=O the process x(t)  becomes Gaussian and its stationary distribution can be 
inferred form (5.14). 

7. Stationary moments 

All stationary moments (x‘), k =  1,2,3, . . . , are equal to zero for odd k. For even k 
they can be calculated using (6.6) and then [20] 

-P) ( x ” ) = 7 T 2 ” - ”  - ( ; ) n  r(i + -p)r(+ + n) 
r(l + n - 2p) (7.1) 

for n= 1,2,3, . . . . 
The second moment (x’) does not depend on the correlation time 5, of the process 

t(t) and reads 

(x‘) = D/2a. (7.2) 
The moments of higher order depend on zc. In particular (d figure 4) 

4az, + 1 
2azc + 1 (x4) = 3 - (x’)’ 

sat,+ 1 
2azc + 1 (x6) = 15 - ( x ’ ) ~  
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I 

a * C  
F$ure4. Scaled moments: (a) (x') /3(xZ)*;  (b) (x6)/15(xZ)'; (c) ~8)/105(x2)4. The case 
arc= 0 corresponds to Gaussian statistics. 

(12uzc+ 1)(8urC+1) 
(x8)=105 (6uz,+ 1)(2ur,+ 1) (x')4. (7.5) 

Having moments, one can construct some characteristics of distribution P(x). The 
skewness [21] characterizes the degree of symmetry of P(x)  and in our case it is equal 
to zero (it means that P(x) is symmetrical with respect to x+ -x). The kurtosis [21] 
measures peakedness or flatness of P(x) in relation to the Gaussian distribution. In the 
case considered, the kurtosis is given by 

(7.6) 

and is always positive, OSKurt(x) S 3 .  It means that the stationary distribution P(x) is 
leptokurtk 1211. 

In the limit zc-+m, the moments ( X ~ ) = ~ " - ' ( X ~ ) ~  (the subscript G denotes 
Gaussian statistics) and they are greater than Gaussian moments. In the limit zc;-'O, 
all moments (7.1) reduce to moments for a corresponding Gaussian process 'and 
kurtosis is zero. 

Acknowledgments 

This work was supported in part by the Committee of Scientific Research (KBN, 
Poland), Grant 2 0387 91 01. The authors would like to thank professor Peter Hanggi 
for pointing out reference [14], and referees for remarks which allowed them to 
improve the presentation. 

References 

[l] Risken H 1989 The Fokker-Planck Equarwn (Berlin: Springer) 



Linear systems with interrupted noise 4861 

[2] Klyatskin V I 1980 Stochastic Equations and Waues in Random-Inhomogeneom Medin (Moscow: 

[3] Lmka J and Niemiec M 1991 J.  Phys. A: Moth. Gen. 24 LlU21 
141 Moss F and McClintock P V E (ed) 1989 Noise in Nonlinear Dynamic01 Systems: Theory, &perimenr, 

Simulutfon vol I-III (Cambridge: University Press) 
Doering C R,  Brand H Rand Ecke R E  eds 1989 h o c .  WorLhop on External Noire andirs Interaction 

with Spatial Degree of Freedom (J .  Stut. Phys. 54) 
[5] t u u k a  J 1987 J. Stat. Phys. 47 505; 1988 1. Phys. A: Math. Gen. 21 3063; 1988 Physica 153A 619: 1989 

Phys. Lett. 139A 29; 1990 Acfu Phys. Polon. A 77 427 
[6] Van den Broeck C and Hbggi P 1984 Phys. Reu. A 30 2730 

Sancho J M and San Miguel M 19W J.  Stat. Phys. 37 151 
tuczka J 1991 C:ech. J.  Phys. 41 289 

[7] Grzywna Z J andcuczka J 1991 Acta Pharm. Jugosl. 41 327 
[SI Laskin N V 1988 Ukrainiun Fiz. Zh. 33 1429; 1989 1. Phys. A: Math. Gen. 22 1565 
[9] L u d a  I, Niemiec M and Piotrowski E 1992 Phys. Lett. 167A 475 

Nauka) (in Russian) 

[IO] Horsthemke Wand Lefever R 1984 Noise Induced Trunsitions (Berlin: Springer-Verlag) 
[Ill Van den Broeck C and Mazo R M 1984 J .  Chem. Phys. 81 3624 
[I21 Drummond I T 1989 1. Phys. A: Muth. Gen. 22 1275; 1992 J.  Phys. A: Math. Gen. 25 2273 
[13] van Kampen N G 1979 Physica 96A 435 
1141 Balakrishnan V, Van den Broeck C and Hinggi P 1988 Phys. Reo. A 38 4213 
[15] L u d a  J 1986 J.  Star. Phys. 42 1009 
[I61 Ventzell A D 1975 Lectures on the Theory of Random Processes (Moscow: Nauka) (in Russian) 

[I71 Magnus W, Oberhettinger F and Soni R P 1966 Formulas and Theorems for the Special Functions of 

[18] Prudnikov A P, Brychkov Yu A and Marichev 0 I 1981 Integrds and Series Elementary functions 

[I91 Prudnikov A P. Brychkov Yu A and Marichev 0 I 1983 IntegraLr and Series Special functions 

[20] Prudnikov A P, Blychkov Yu A and Marichev 0 I 1986 Inregrnls m d  Serier Additional chapters 

[21] Press W H. Flannery B P, Teukolsky S A and Vetterling W T 1989 Numerical Recipes in Pascal 

chapter 10.3 

Matbemricul Physics (Berlin: Springer) 

(Moscow: Nauka). equation 2.5.57(7) 

(Moscow: Nauka), equation 2.15.12(2) 

(Moscow: Nauka) equation 2.19.3(7) 

(Cambridge: Cambridge University Press) chapter 13.1 


